Password Hardening Based on Keystroke Dynamics

Fabian Monrose

Michael K. Reiter

Susanne Wetzel

Bell Labs, Lucent Technologies
Murray Hill, NJ, USA
{fabian,reiter,sgwetzel}@research.bell-labs.com

Abstract

We present a novel approach to improving the security of
passwords. In our approach, the legitimate user’s typing
patterns (e.g., durations of keystrokes, and latencies between
keystrokes) are combined with the user’s password to gen-
erate a hardened password that is convincingly more secure
than conventional passwords against both online and offline
attackers. In addition, our scheme automatically adapts to
gradual changes in a user’s typing patterns while maintain-
ing the same hardened password across multiple logins, for
use in file encryption or other applications requiring a long-
term secret key. Using empirical data and a prototype im-
plementation of our scheme, we give evidence that our ap-
proach is viable in practice, in terms of ease of use, improved
security, and performance.

1 Introduction

Textual passwords have been the primary means of authen-
ticating users to computers since the introduction of access
controls in computer systems. Passwords remain the domi-
nant user authentication technology today, despite the fact
that they have been shown to be a fairly weak mechanism
for authenticating users. Studies have shown that users tend
to choose passwords that can be broken by an exhaustive
search of a relatively small subset of all possible passwords.
In one case study of 14,000 Unix passwords, almost 25%
of the passwords were found by searching for words from a
carefully formed “dictionary” of only 3 x 10° words [10] (see
also [21, 4, 27, 29]). This high success rate is not unusual
despite the fact that there are roughly 2 x 10** 8-character
passwords consisting of digits and upper and lower case let-
ters alone.

In this paper, we propose a technique for improving the
security of password-based applications by incorporating bio-
metric information into the password. Specifically, our tech-
nique generates a hardened password based on both the pass-
word characters and the user’s typing patterns when typing
the password. This hardened password can be tested for
login purposes or used as a cryptographic key for file en-
cryption, virtual private network access, etc. An attacker
who obtains all stored system information for password ver-
ification (the analog of the /etc/passwd file in a typical Unix
environment) is faced with a convincingly more difficult task

to exhaustively search for the hardened password than in a
traditional password scheme. Moreover, an attacker who
learns the user’s textual password (e.g., by observing it be-
ing typed) must type it like the legitimate user to log into
an account protected by our scheme.

There are several challenges to realizing this goal. The
first is to identify features of a user’s typing patterns (e.g.,
latencies between keystrokes, or duration of keystrokes) that
the user reliably repeats (approximately) when typing her
password. The second is to use these features when the
user types her password to generate the correct hardened
password. At the same time, however, the attacker who cap-
tures system information used to generate or verify hardened
passwords should be unable to determine which features are
relevant to generating a user’s hardened password, since re-
vealing this information could reveal information about the
characters related to that password feature. For example,
suppose the attacker learns that the latency between the
first and second keystrokes is a feature that is reliably re-
peated by the user and thus is used to generate her hardened
password. Then this may reveal information about the first
and second characters of the text password, since due to
keyboard dynamics, some digraphs are more amenable to
reliable latency repetitions than others.

Our approach effectively hides information about which
of a user’s features are relevant to generating her hardened
password, even from an attacker that captures all system
information. At the same time, it employs novel techniques
to impose an additional (multiplicative) work factor on the
attacker who attempts to exhaustively search the password
space. Using empirical data, we evaluate both this work
factor and the reliability with which legitimate users can
generate their hardened passwords. Our empirical studies
demonstrate various choices of parameters that yield both
increased security and sufficient ease of use.

Our scheme is very attractive for use in practice. Unlike
other biometric authentication procedures (e.g., fingerprint
recognition, retina or iris scans), our approach is unintru-
sive and works with off-the-shelf keyboards. Our scheme
initially is as secure as a “normal” password scheme and
then adapts to the user’s typing patterns over time, grad-
ually hardening the password with biometric information.
Moreover, while fully able to adapt to gradual changes in
user typing patterns, our scheme can be used to generate
the same hardened password indefinitely, despite changes in
the user’s typing patterns. Therefore, the hardened pass-
word can be used, e.g., to encrypt files, without needing to
decrypt and re-encrypt files with a new hardened password
on each login.

The main limitation of our scheme is that a user whose
typing patterns change substantially between consecutive in-
stances of typing her password may be unable to generate

her correct hardened password and thus, e.g., might be un-
able to log in. The most common circumstance in which this
could happen is if the user attempts to log in using a different
style keyboard than her regular one, which can cause a dra-
matic change in the user’s typing patterns. In light of this,
applications for which our scheme is ideally suited are access
to virtual private networks from laptop computers, and file
or disk encryption on laptop computers. Laptops provide a
single, persistently available keyboard at which the user can
type her password, which is the ideal situation for repeated
generation of her hardened password. Moreover, with the
rising rate of laptop thefts (e.g., see [22]), these applications
demand security better than that provided by traditional
passwords.

2 Related work

The motivation for using keystroke features to harden pass-
words comes from years of research validating the hypoth-
esis that user keystroke features both are highly repeat-
able and different between users (e.g., [6, 28, 14, 15, 1, 9,
20, 24]). Prior work has anticipated utilizing keystroke in-
formation in the user login process (e.g., [9]), and indeed
products implementing this are being marketed today (e.g.,
see http://www.biopassword.com/). Allsuch prior schemes
work by storing a model of user keystroke behavior in the
system, and then comparing user keystroke behavior during
password entry to this model. Thus, while they are useful to
defend against an online attacker who attempts to log into
the system directly, they provide no additional protection
against an offline attacker who captures system information
related to user authentication and then conducts an offline
dictionary attack to find the password (e.g., to then decrypt
files encrypted under the password). On the contrary, the
captured model of the legitimate user’s keystroke behavior
can leak information about the password to such an attacker,
as discussed in Section 1. Thus, our work improves on these
schemes in two ways: First, our method is the first to offer
stronger security against both online and offline attackers.
Second, our scheme is the first to generate a repeatable se-
cret based on the password and keystroke dynamics that is
stronger than the password itself and that can be used in
applications other than login, such as file encryption.

The only work of which we are aware that previously
proposed generating a repeatable key based on biometric
information is [3]. In this scheme, a user carries a portable
storage device containing (i) error correcting parameters to
decode readings of the biometric (e.g., an iris scan) with a
limited number of errors to a “canonical” reading for that
user, and (ii) a one-way hash of that canonical reading for
verification purposes. Moreover, they further proposed a
scheme in which the canonical biometric reading for that
user is hashed together with a password. Their techniques,
however, are inappropriate for our goals because the stored
error correcting parameters, if captured, reveal information
about the canonical form of the biometric for the user. For
this reason, their approach requires a biometric with sub-
stantial entropy: e.g., they considered iris scans offering an
estimated 173 bits of entropy, so that the remaining entropy
after exposure of the error correcting parameters (they esti-
mated 147 bits of remaining entropy) was still sufficiently
large for their application. In our case, the measurable
keystroke features for an 8-character password are relatively
few (at most 15 on standard keyboards), and indeed in our
scheme, the password’s entropy will generally dominate the
entropy available from keystroke features. Thus, exposing

error-correcting parameters in our setting would substan-
tially diminish the available entropy from keystroke features,
almost to the point of negating their utility. Moreover, ex-
posing information about the keystroke features can, in turn,
expose information about the password itself (as discussed
in Section 1). This makes the careful utilization of keystroke
features critical in our setting, whereas in their setting, the
biometrics they considered were presumed independent of
the password chosen.

Our method to harden user passwords has conceptual
similarities to password “salting” for user login. Salting is
a method in which the user’s password is prepended with a
random number (the “salt”) of s bits in length before hash-
ing the password and comparing the result to a previously
stored value [21, 16]. As a result, the search space of an
attacker is increased by a factor of 2° if the attacker does
not have access to the salts. However, the correct salt either
must be stored in the system or found by exhaustive search
at login time. Intuitively, the scheme that we propose in
this paper can be used to improve this approach, by deter-
mining some or all of the salt bits using the user’s typing
features. In addition, an advantage of our approach over
salting is that our scheme can be effective against an online
attacker who learns the legitimate user’s password (e.g., by
observing the user type it) and who then attempts to log in
as that user.

Finally, we note that several other research efforts on
password security have focused on detecting the unautho-
rized modification of system information related to password
authentication (e.g., the attacker adds a new account with
a password it knows, or changes the password of an exist-
ing account) [13, 12, 8]. Here we do not focus on this threat
model, though our hardened passwords can be directly com-
bined with these techniques to provide security against this
attacker, as well.

3 Preliminaries

The hardened passwords generated in our scheme have many
potential uses, including user login, file encryption, and au-
thentication to virtual private networks. However, for con-
creteness of exposition, in the rest of this paper we focus on
the generation and use of hardened passwords for the pur-
poses of user login. Extending our discussion to these other
applications is straightforward.

We assume a computer system with a set A of user ac-
counts. Access to each user account is regulated by a login
program that challenges the user for an account name and
password. Using the user’s input and some stored informa-
tion for the account a that the user is trying to access, the
login program either accepts or rejects the attempt to log
into a. Like in computer systems today, the characters that
the user types into the password field are a factor in the
determination to accept or reject the login. For the rest of
this paper, we denote by pwd, the correct string of char-
acters for the password field when logging into account a.
That is, pwd, denotes the correct text password as typically
used in computer systems today.

In our architecture, typing pwd, is necessary but not
sufficient to access a. Rather, the login program combines
the characters typed in the password field with keystroke
features to form a hardened password that is tested to de-
termine whether login is successful. The correct hardened
password for account a is denoted hpwd,. The login pro-
gram will fail to generate hpwd, if either something other
than pwd, is entered in the password field or if the user’s

typing patterns significantly differ from the typing patterns
displayed in previous successful logins to the account. Here
we present our scheme in a way that maintains hpwd, con-
stant across logins, even despite gradual shifts in the user’s
typing patterns, so that hpwd, can also be used for longer-
term purposes (e.g., file encryption). However, our scheme
can be easily tuned to change hpwd, after each successful
login, if desired.

3.1 Features

In order to generate hpwd, from pwd, and the (legitimate)
user’s typing patterns, the login program measures a set
of features whenever a user types a password. Empirically
we will examine the use of keystroke duration and latency
between keystrokes as features of interest, but other fea-
tures (e.g., force of keystrokes) could be used if they can be
measured by the login program. Abstractly, we represent
a feature by a function ¢ : A x N — Rt where ¢(a,f) is
the measurement of that feature during the £-th (successful
or unsuccessful) login attempt to account a. For example,
if the feature ¢ denotes the latency between the first and
second keystrokes, then ¢(a,6) is that latency on the sixth
attempt to log into a. Let m denote the number of features
that are measured during logins, and let ¢1,..., ¢ denote
their respective functions.

Central to our scheme is the notion of a distinguishing
feature. For each feature ¢;, let t; € R" be a fixed parameter
of the system. Also, let pq; and o4; be the mean and stan-
dard deviation of the measurements ¢;(a,j1),..., di(a,jn)
where ji,...,Jjn are the last h successful logins to the ac-
count a and h € N is a fixed parameter of the system. We
say that ¢; is a distinguishing feature for the account (af-
ter these last h successful logins) if |pa; — ¢i| > koa; where
k € RT is a parameter of the system. If ¢; is a distinguish-
ing feature for the account a, then either ¢; > pqei + koai,
i.e., the user consistently measures below ¢; on this feature,
or t; < Mai — koai, i.e., the user consistently measures above
t; on this feature.

3.2 Security goals

In our login architecture, the system stores information per
account that is accessed by the login program to verify at-
tempts to log in. This information is necessarily based on
pwd, and hpwd,, but will not include either of these values
themselves. This is similar to Unix systems, for example,
where the /etc/passwd file contains the salt for that pass-
word and the result of encrypting a fixed string with a key
generated from the password and salt. In our login archi-
tecture, the information stored per account will be more
extensive but will still be relatively small.

The primary attacker with which we are concerned is an
“offline” attacker who captures this information stored in
the system, and then uses this information in an offline effort
to find hpwd, (and pwd,). A first and basic requirement is
that any such attack be at least as difficult as exhaustively
searching for pwd, in a traditional Unix setting where the
attacker has /etc/passwd. In particular, if the user chooses
pwd, to be difficult for an attacker to find using a dictionary
attack, then hpwd, will be at least as secure in our scheme.

A more ambitious goal of our scheme is to increase the
work that the attacker must undertake by a considerable
amount even if pwd, is chosen poorly, i.e., in a way that
is susceptible to a dictionary attack. The amount of addi-
tional work that the attacker must undertake in our scheme
generally grows with the number of distinguishing features

for the account (when the attacker captured the system in-
formation). On one extreme, if there are no distinguishing
features for the account, then the attacker can find pwd,
and hpwd, in roughly the same amount of time as the at-
tacker would take to find pwd, in a traditional Unix setting.
On the other extreme, if all m features are distinguishing
for the account, then the attacker’s task can be slowed by a
multiplicative factor up to 2™. In Section 7, we describe an
empirical analysis that sheds light on what this slowdown
factor is likely to be in practice. In addition, we show how
our scheme can be combined with salting techniques, and
so the slowdown factor that our scheme achieves is over and
above any benefits that salting offers.

A second attacker that we defend against with our scheme
is an “online” attacker who learns pwd, (e.g., by observing
it being typed in) and then attempts to log in using it. Our
scheme makes this no easier and typically harder for this
attacker to succeed in logging in.

4 Overview

In this section we give an overview of our technique for
generating hpwd, from pwd, and user keystroke features.
When the account a is initialized, the initialization pro-
gram chooses the value of hpwd, at random from Z,, where
q is a fixed, sufficiently large prime number; e.g., a ¢ of
length 160 bits should suffice. The initialization program
then creates 2m shares {s?, sil}lgigm of hpwd, using a se-
cret sharing scheme such that for any b € {0,1}™, the shares
{s’i’(l)}lgigm can be used to reconstruct hpwd,. (Here, b(7)
is the i-th bit of b.) These shares are arranged in an “in-
struction table”:

<ti 2t

0 T

1 S1 ST
2 53 s%
m Sm_ | Sm

The initialization program encrypts each element of both
columns (i.e., the “< t;” and “> ¢;” columns) with pwd,.
This (encrypted) table is stored in the system. In the ¢-th
login attempt to a, the login program uses the entered pass-
word text pwd’ to decrypt the elements of the table, which
will result in the previously stored values only if pwd, =
pwd'. For each feature ¢;, the value of ¢;(a,f) indicates
which of the two values in the i-th row should be used in
the reconstruction to find hpwd,: if ¢i(a,f) < t;, then the
value in the first column is used, and otherwise the value in
the second column is used. In the first logins after initial-
ization, the value in either the first or second column works
equally well. However, as distinguishing features ¢; for this
account develop over time, the login program perturbs the
value in the second column of row @ if p.; < ¢; and perturbs
the value in the first column of row ¢ otherwise. So, the
reconstruction to find hpwd, in the future will succeed only
when future measurements of features are consistent with
the user’s previous distinguished features.

In this way, our scheme helps defend against an online at-
tacker who learns (or tries to guess) pwd, and then attempts
to log into a using it. Unless this attacker can mimic the
legitimate user’s keystroke behavior for the account’s distin-
guishing features, the attacker will fail in logging into the
account. Moreover, numerous prior studies have shown that

keystroke dynamics tend to differ significantly from user to
user (see Section 2), and so typically the online attacker will
fail in his attempts to log into a. Thus, the security analysis
in the rest of this paper will focus on the offline attacker.

Not any secret sharing scheme satisfying the properties
described above will suffice for our technique, since to de-
fend against an offline attacker, the shares must be of a form
that does not easily reveal if a guessed password pwd’ suc-
cessfully decrypts the table. In the following sections, we
present instances of our technique using two different shar-
ing schemes.

Our scheme can be easily combined with salting to fur-
ther improve security. A natural place to include a salt is in
the validation of hpwd, just after reconstructing it. For ex-
ample, when hpwd, is generated during a login, it could be
prepended with a salt before hashing it and testing against
a previously stored hash value. The salt can be stored as
is typically done today, or may not be stored so that the
system must exhaustively search for it [16]. In this case,
the extra salt results in an additional work factor that the
offline attacker must overcome.

5 An instance using polynomials

In this section, we describe an instance of the technique of
Section 4 using Shamir’s secret sharing scheme [25]. In this
scheme, hpwd, is shared by choosing a random polynomial
fa € Zglx] of degree m — 1 such that f,(0) = hpwd,. The
shares are points on this polynomial. We present the method
in two steps, by first describing a simpler variation and then
extending it in Section 5.4 to be more secure against an
offline attack.

5.1 Stored data structures and initialization

Let G be a pseudorandom function family [23] such that
for any key K and any input z, Gk (z) is a pseudorandom
element of Z;.l In practice, a likely implementation of G
would be Gk (z) = F(K,z) where F is a one-way function,
e.g., SHA-1 [26]. There are two data structures stored in
the system per account.

e An instruction table that contains “instructions” regard-
ing how feature measurements are to be used to generate
hpwd,. More specifically, this instruction table contains an
entry of the form <i, aqi,Bq:> for each feature ¢;. Here,

@ai = Yoi - Gpwd, (2i) mod g
ﬂai = y;i . Gpwda (2i + 1) mod q

and y2;,yl, are elements of Zy. Initially (i.e., when the
user first chooses pwd,,), all 2m values {y2;, ye; Ji<i<m are
chosen such that all the points {(2i, y2;), (2i+1, ya;) }i<i<m
lie on a single, random polynomial f, € Zg[x] of degree
m — 1 such that f,(0) = hpwd,.

e An encrypted, constant-size history file that contains the
measurements for all features over the last h successful
logins to a for some fixed parameter h. More specifi-
cally, if since the last time pwd, was changed, the login

That is, a polynomially-bounded adversary not knowing K can-
not distinguish between G'x (¢) and a randomly chosen element of Z7,
even if he is first allowed to examine Gk (&) for many &’s of his choice
and is allowed to even pick z (as long as it is different from every &
he previously asked about).

attempts j1,...,J¢ to a were successful, then this file con-
tains ¢i(a,j) for each 1 < i< mand j € {jo—nt1,-.-,J¢}-
In addition, enough redundancy is added to this file so
that when it is decrypted with the key under which it
was previously encrypted, the fact that the file decrypted
successfully can be recognized.

This file is initialized with all values set to 0, and then is
encrypted with hpwd, using a symmetric cipher. The size
of this file should remain constant over time (e.g., must
be padded out when necessary), so that its size yields no
information about how many successful logins there have
been.

5.2 Logging in

The login program takes the following steps whenever the
user attempts to log into a. Suppose that this is the /-th
attempt to log into a, and let pwd’ denote the sequence of
characters that the user typed. The login program takes the
following steps.

1. For each ¢;, the login program uses pwd’ to “decrypt” aq;
if ¢i(a,) < t;, and uses pwd’ to “decrypt” B.; otherwise.
Specifically, it assigns

(24, aai - Gpuar (20)™" mod q) if ¢i(a,l) < t;
(zi,4i) = § (20 + 1, Bui - Gpwar (26 + 1)~ ' mod q)
if ¢; (a7 E) >t

The login program now holds m points {(zs,yi)}1<i<m-

2. The login program sets

hpwd' = Zyi - A; mod ¢

i=1

T
ve I
r; — T

1<G<m,j#i

where

is the standard Lagrange coefficient for interpolation (e.g.,
see [19, p. 526]). It then decrypts the history file using
hpwd’. If this decryption yields a properly-formed plain-
text history file, then the login is deemed successful. (If
the login were deemed unsuccessful, then the login proce-
dure would halt here.)

3. The login program updates the data in the history file,
computes the standard deviation o,; and mean pq; for
each feature ¢; over the last h successful logins to a, en-
crypts the new history file with hpwd’ (i.e., hpwd,), and
overwrites the old history file with this new encrypted
history file.?

4. The login program generates a new random polynomial
fa € Z4[z] of degree m — 1 such that f,(0) = hpwd'.

5. For each distinguishing feature ¢;, i.e., |pai — ti| > koai,
the login program chooses new random values ygi, y;i €
Z, subject to the following constraints:

. 0 . 1
/’L(Li<ti = fa(zl):yai/\fa(22+l);£yai
. 0 . 1
Maizti = fa(zl);éyai/\fa(22+l):yai
2For maximum security, this and the previous step should be per-
formed without writing the plaintext history file to disk. Rather, the

login program should hold the plaintext history in volatile storage
only.

For all other features ¢;—i.e., those for which |pa; —t;| <
koqi, or all features if there have been fewer than h suc-
cessful logins to this account since initialization (see Sec-
tion 3.1)—the login program sets y2; = f,(2i) and y}; =
fa(2i +1).

6. The login program replaces the instruction table with a
new table with an entry of the form <i, o;, 3,;> for each
feature ¢;. Here,

Obi = Yai - Gpwa (2i) mod ¢
/Btlzi = y;z : Gpwd’ (2Z + 1) mod q

where 32;, 92, are the new values generated in the previous
step.

Step 4 above is particularly noteworthy for two reasons.
First, due to this step, the polynomial f, is changed to a
new random polynomial during each successful login. This
ensures that an attacker viewing the instruction table at
two different times will gain no information about which
features switched from distinguishing to non-distinguishing
and vice-versa during the interim logins. That is, each time
the attacker views an instruction table for an account, either
all values will be the same since the last time (if there were
no successful logins since the attacker last saw the table)
or all values will be different. Second, though generated
randomly, f, is chosen so that f,(0) = hpwd,. This ensures
that hpwd, remains constant across multiple logins.

Step 5 is also noteworthy, since it shows that whether
each feature is distinguishing is recomputed in each success-
ful login. So, a feature that was previously distinguishing
can become undistinguishing and vice-versa. This is the
mechanism that enables our scheme to naturally adapt to
gradual changes in the user’s typing patterns over time.

5.3 Security

Consider the “offline” attacker who obtains account a’s his-
tory file and instruction table, and attempts to find the value
of hpwd,. Presuming that the encryption of the history file
using hpwd,, is secure, since the values y2;, yo; are effectively
encrypted under pwd,, and since pwd, is presumably chosen
from a much smaller space than hpwd,, the easiest way to
find hpwd, is to first find pwd,. Thus, to argue the bene-
fits of this scheme, we have to show two things. First, we
have to show that finding pwd, is not made easier in our
scheme than it is in a typical environment where access is
determined by testing the hash of the password against a
previously stored hash value. Second, we have to show that
the cost to the attacker of finding hpwd, is generally greater
by a significant multiplicative factor.

That searching for pwd, is not made easier in our scheme
is clear. The attacker has available only the instruction table
and the encrypted history file. Since there is a row in the
instruction table for each feature (not just those that are
distinguishing for a), and since the contents of each row
are pseudorandom values, the rows reveal no information
about pwd,. And, all other data available to the attacker is
encrypted with hpwd,,.

The more interesting security consideration in this scheme
is how much security it achieves over a traditional password
scheme. Suppose that the attacker captured the history file
and instruction table after ¢ > h successful logins to a, and
let d be the number of distinguishing features for this ac-
count in the ¢-th login. When guessing a password pwd’,
the attacker can decrypt each field aq; and (,; using pwd’

to yield points (24,92;) and (2i + 1,§z;), respectively, for
1 <i <m. Note that §q; = yg; and §z; = ya;, where y;, ys;
are as generated in Step 5, if and (with overwhelming prob-
ability) only if pwd’ = pwd,. Therefore, there exists a bit
string b € {0,1}" such that {(2i + b(i), 5°")}1<i<m inter-
polates to a polynomial f with f(0) = hpwd,, if and only
if pwd’ = pwd,. Consequently, one approach that the at-
tacker can take is to enumerate through all b € {0,1}™ and,
for each f thus computed, see if £(0) = hpwd, (i.e., if f(0)
will decrypt the history file). This approach slows down the
attacker’s search for hpwd, (and pwd,) by a multiplicative
factor of 2™. In practice, the slowdown that the attacker
suffers may be substantially less because user typing pat-
terns are not random. In Section 7, we use empirical data
to quantify the degree of security achieved against this form
of attack, and show that it is nevertheless substantial.

However, the attacker has potentially more powerful at-
tacks against this scheme using the 2m points { (24, §2;), (2i+
1, §ai) Hi<i<m, due to the following contrast. On the one
hand, if pwd’ # pwd,, then with overwhelming probability,
no m+ 1 points will lie on a single degree m — 1 polynomial,
i.e., each subset of m points interpolates to a different poly-
nomial with a different y-intercept (not equal to hpwd,). On
the other hand, if pwd’ = pwd,,, then there are 2m —d > m
points that all lie on a polynomial f of degree m — 1 (and
f(0) = hpwd,); in particular if d < m, then there are at
least m + 1 points that all lie on some such f. Asymp-
totically (i.e., as m grows arbitrarily large), it is known
that the second case can be distinguished from the first in
O(m?) time if d < (2—+/2)m = .585m using error-correcting
techniques [7]. These techniques do not directly break our
scheme, since our analysis in Section 7 suggests that for
many reasonable values of k, d will typically be too large
relative to m for these techniques to succeed (unless the at-
tacker captures the account information before the account
is used). Moreover, typically m will be too small in our sce-
nario for these techniques to offer benefit over the exhaustive
approach above. However, because these techniques might
be improved with application-specific knowledge—e.g., that
in the second case, at least one of (2i,§2;) and (2i + 1, §2;)
lies on f—it is prudent to look for schemes that confound
the use of error-correcting techniques. This is the goal of
Section 5.4.

5.4 A variation using exponentiation

In this section we present a minor variation of the scheme
presented in Sections 5.1-5.2, to which we refer as the “origi-
nal” scheme below. The scheme of this section is more secure
in several ways that will be described below.

Let p be a large prime such that computing discrete loga-
rithms modulo p is computationally intractable (e.g., choose
p of length 1024 bits) and such that ¢ divides p — 1. Also,
let g be an element of order ¢ in Z,. The main concep-
tual differences in this variation are that hpwd, is defined to
be g7+ mod p, and rather than storing a; and B4 in the
instruction table, the values

Yai = g% modp

Oai gﬁ‘“' mod p

are stored instead. Intuitively, since the attacker cannot
compute discrete logarithms modulo p, this hides y2;, yi;
from him even if he guesses pwd,,.

There are a number of reasons to prefer this variation
to the original in practice. First, this modified instruc-

tion table can yield no more information about f,(0) to
the attacker than that of the original, since the attacker
can easily transform any instruction table in the original
scheme to an instruction table for this variation by comput-
ing g%+ mod p and gﬂf“' mod p for each a,; and B,i. Second,
error-correcting algorithms such as [7] that offer faster-than-
brute-force attacks when m grows large and d is small do
not directly apply to this variation, and we are unaware of
any technique that the attacker can use to search for hpwd,
faster than brute force. Third, as a practical matter, this
variation seems to require the attacker to perform modu-
lar exponentiations per guessed password when conducting
a dictionary attack. Since these are computationally inten-
sive operations, this should slow the attacker’s efforts even
further.

This modification imposes other changes to the scheme.
In particular, the job of determining hpwd, from pwd, and
the feature measurements changes somewhat. Moreover, re-
randomizing the polynomial f, after each successful login
must be done a bit differently, since f,(0) is hidden even
from the login program. The resulting login process for the
(-th login attempt to a is as follows. Let pwd’ denote the
sequence of characters that the user typed.

1. For each ¢;, the login program assigns

(227 (’Yai)GPWd’ (2i)~! mod ¢ mod p)

if ¢; (a, f) <t
(20 + 1, (8ai) o (2i+1) 7" modq 1 0 P)

1f (ﬁl (a, f) Z ti

(5, 2i) =

The login program now holds m pairs {(zi, zi) }1<i<m.-
2. The login program sets

m

hpwd' = H(zl)kl mod p

i=1

where A; is the standard Lagrange coefficient. It then
decrypts the history file using hpwd’. If this decryption
yields a properly-formed plaintext history file, then the
login is deemed successful. (If the login were deemed un-
successful, then the login procedure would halt here.)

3. The login program updates the data in the history file,
computes the standard deviation o,; and mean pq; for
each feature ¢; over the last h successful logins to a, en-
crypts the new history file with hpwd' (i.e., hpwd,), and
overwrites the old history file with this new encrypted
history file.

4. The login program generates a new random polynomial
[€ Zy[z] of degree m — 1 such that f(0) = 0.

5. For each distinguishing feature ¢;, i.e., |pai — ti| > koai,
the login program chooses new random values y2;,yl; €
Zy subject to the following constraints:

fai <ti = f(20) =ye; A F(2i+1) # yas
Mai >t = f(Zi)#ygi/\f(2i+1):yéi

For all other features ¢;—i.e., those for which |pa; —t;| <
koqi, or all features if there have been fewer than h suc-
cessful logins to this account since initialization (see Sec-
tion 3.1)—the login program sets y2; = f(2i) and y.; =
f(2i+1).

6. The login program replaces the instruction table with a
new table with an entry of the form <i,~.;,d,;> for each
feature ¢;. Here,

i = (hpwd' - g¥e1) %o 2D mod p
8o; = (hpwd"- g’"’flli)Gpwd’(QH'l) mod p

where 32;,y2; are the new values generated in the previous
step.

Step 4 is again noteworthy. In this case, f, is determined
by choosing a random polynomial f of degree m—1 such that
f(0) = 0. The polynomial f, is then implicitly determined
as fo(z) = f(x)+log,(hpwd,), where the logarithm is taken
mod p, due to the construction of +,; and ¢&,; in Step 6.
This roundabout method of re-randomizing f, in order to
maintain the same hpwd, = g7+ mod p is needed because
the login program cannot compute log, (hpwd,,).

6 An instance based on vector spaces

In this section we briefly describe a second candidate in-
stance of the technique outlined in Section 4. This solution
addresses a potential weakness of the scheme of Section 5,
namely that any m of the 2m values in the instruction table
could conceivably be used to reconstruct hpwd,. That is, the
attacker need not limit his attempts at reconstructing hpwd,
to those involving one value from each row of the table since,
e.g., the topmost m values in the instruction table could be
used to reconstruct hpwd, if none of the first m/2 features
are distinguishing. It would seem that our technique could
be strengthened if the secret sharing scheme used to popu-
late the table would allow reconstruction only with one value
from each row. Here we present such a sharing scheme and
corresponding instance of our method.

In this method, hpwd, is expressed as the determinant
of a matrix over Z, where ¢ is chosen as in Section 5.
Specifically, when an account is initialized, m (column) vec-
tors v 3 Vem € Zg' are chosen at random from Zj".

Ya1s--
The hardened password is hpwd, = det(v,,,...,v,,,) mod
q. The instruction table initially contains an entry of the
form <i,gai,gai> for each feature ¢;, where
Qui = Vg;* Gpwd, (21) mod g
B,, = Y4 Gpwd,(2i+ 1) modg

Note that at initialization, and more generally when there
are no distinguishing features, the “shares” in o,; and 8 .
are the same (albeit encrypted under different outputs from
Gpwd,). This is reasonable since when there are no distin-
guishing features, our approach offers no additional security
over that offered by pwd, anyway.

The login process for the ¢-th login attempt to a is as
follows. Let pwd’ denote the sequence of characters that the

user typed.
1. For each ¢;, the login program assigns

[a,; Gpua(2i) ' mod q if ¢i(a,l) < t;
B, Gowe (20 + 1) mod q if ¢i(a,l) > t;

The login program now holds m vectors {v; }1<i<m.

2. The login program sets hpwd = det(v,,...,v,,) mod q.
It then decrypts the history file using hpwd'. If this de-
cryption yields a properly-formed plaintext history file,

then the login is deemed successful. (If the login were
deemed unsuccessful, then the login procedure would halt
here.)

3. The login program updates the data in the history file,
computes the standard deviation oq; and mean puq; for
each feature ¢; over the last h successful logins to a, en-
crypts the new history file with hpwd' (i.e., hpwd,), and
overwrites the old history file with this new encrypted
history file.

4. The login program generates new random vectors wy, ...,
w,, € Z} such that det(w,,...,w,,) mod ¢ = hpwd'.

)’ —=m

5. The login program takes one of the following two steps,
depending on whether there are distinguishing features.

a. If there are no distinguishing features, then the login
o _ = _ :
program sets v,; = v,; = w, for each 1 <i < m.

b. Otherwise, the login program generates new random

vectors u,, ..., u,, € Z" such that?
vb e {0,1}™: det(gl{(l), . ,g%m)) modg=1 (1)
where
G0 — [e i) =0
- Ty ifb(r) =1
and e; is the unit vector with a 1 in position ¢ and a
0 in all other positions. (How to compute u,,...,u,,

efficiently is described below.) Then, for each distin-
guishing feature ¢;, the login program chooses new
random vectors v°,, vl € Zy" subject to the following
constraints, where W = (w,,...,w,,):

—m

pai <ti = g, =wAv, #W -,

Mai >t = Qgi #wi/\ﬂflli :W'ﬂi
For all other features ¢;—i.e., those for which |pa; —
ti| < koa;—the login program sets v°, = w, and v}, =

6. The login program replaces the instruction table with a

new table with an entry of the form <i, o}, 3’ > for each

a1’
feature ¢;. Here,

o, = Y G (2i) mod g

=ai “Zai
1 .
g:“ = w,; Gpwa' (20 +1) mod ¢
where v, v}, are the new vectors generated in the previ-
ous step.

To perform Step 4 efficiently, the login program can select
any factorization hpwd, = [[;™ 7: mod ¢ of hpwd,. Then,
the login program can set (w,,...,w,,) = Tup - Tlo mod g
where Ti,, Tp satisfy Tio[i,j] = Twlj,t] = 0 for 1 < ¢ <
j < m, T[i, j] and Tuplj, 7] are random elements of Z, for
1<j <i<m,and {Tio[i, 1], Tupli, 1] }1<i<m = {mi}1<i<om.

An efficient algorithm to generate u,,...,u,, in Step 5b
so that they contain significant randomness and satisfy con-
dition (1) is as follows. The login program first chooses an

3Condition (1) is stronger than necessary. Rather, using terminol-
ogy introduced in Section 7, it suffices that det(gl{(l), - ,yigm)) mod
g = 1 only for any b € {0,1}"™ that extends the feature descriptor
of this account. However, we know a fast algorithm for computing
{u;}1<i<m satisfying only the more restrictive condition (1).

upper-triangular matrix U’ = (u},...,u,,) that has 1 for
each diagonal element and random elements of Z, above
the diagonal. Then, the login program sets (u;,...,u,,) =
O-U'-TI~" where IT = (x,...,x,,) is a random permutation
matrix (i.e., the identity matrix with columns permuted ran-
domly) subject to the constraint that if ¢;,,...,¢;, are the
distinguishing features for this account, then {m;}1<j<a =

{ei; }1<j<a- In particular, this stipulation ensures (with high

probability) that v, # vl for each 1 < i < m when created
in Step 5b.

A property of this scheme is that when an offline attacker
decrypts the instruction table with a candidate password
pwd’ to yield vectors {8%,, 8}, }1<i<m, the only combinations
of these vectors that could conceivably yield hpwd, are of the
form det(ﬁz(ll), .., 2% mod ¢ for some b € {0,1}™. That
is, not any combination of the m vectors holds the possibility
of generating hpwd,,.

As in Section 5, the security of this scheme against an
offline attacker depends most directly on how quickly the
attacker can distinguish the cases pwd’ = pwd, and pwd’ #
pwd,. When an attacker decrypts the instruction table with
a password pwd # pwd,, the result will be 2m random
vectors. If pwd’ = pwd,, however, the table may have more

structure. For example, if pwd’ = pwd, and there is only
one distinguishing feature ¢;, then either #°; or 8}, will be

expressible as a linear combination of ng and ﬁ}l]- for some
j # i (due to our construction of u,,...,u,, above). In
general, whether there is enough additional structure for
the attacker to efficiently exploit depends on the number

and distribution of distinguishing features.

7 Empirical analysis

In order to evaluate the viability of our approach, we devel-
oped and deployed an experiment to collect password typ-
ing measurements from users. Specifically, we replaced the
basic-auth function of a Netscape Enterprise Server 3.0
in active use with an implementation that uses a Java ap-
plet to record each user’s keystroke features (keystroke du-
rations and latencies between keystrokes) when typing her
password. On this web server, all privileged users use the
same password to access the password-protected pages. This
provided an interesting case study, since it enabled a direct
comparison of user typing behavior on the same password.
The password used in this experiment has 8 characters (i.e.,
m = 15), but because it is still in active use, we cannot
disclose it here. At the time of this writing, login measure-
ments have been recorded for approximately 11 weeks. For
the discussion in this section, we use data gathered from
the 13 users for which we have at least 4 logins recorded on
her usual keyboard. Our analysis employs only each user’s
logins from her usual keyboard, as reported by the user. In
total, this analysis is based on 188 recorded logins.

The goal of our experiment is to empirically evaluate the
number of distinguishing features for the average user, the
entropy of users’ distinguishing features, and the reliability
of successful password entry. The number of distinguish-
ing features for the average user is important because the
strength of our proposal is enhanced if the number d of dis-
tinguishing features for a user is large relative to the number
m of features overall. However, this alone is not enough to
ensure that our scheme offers a significant increase in se-
curity. To see why, suppose for an extreme case that all
users could be partitioned into “slow typists” and “fast typ-
ists”: slow typists have the property that for any of their

distinguishing features ¢;, pq; > t; (where a is the user’s ac-
count), and analogously fast typists have the property that
pai < t; for all of their distinguishing features ¢;. Then,
even if all of an account’s features are distinguishing, the
offline attacker needs to examine only two possibilities upon
guessing a password pwd’: the values in the first column of
the (decrypted) instruction table, and the values in the sec-
ond column. Consequently, the entropy of users’ distinguish-
ing features (defined below) is as important to our scheme as
the number of distinguishing features. Finally, obviously the
ability of a user to reliably generate her hardened password
is important to the usability of our scheme.

We evaluated each of these facets for varying values of
k, where a feature ¢; is distinguishing if |pai — ti| > koas
(see Section 3.1). In general, a lower value of k increases the
number of distinguishing features per user and thus increases
the sensitivity of login to user typing patterns. On the other
hand, a higher value of k£ makes it easier for the user to log in,
but tends to decrease the number of distinguishing features
per user. In addition, for simplicity of presentation, in our
evaluation we ignored the parameter h; i.e., all of an account
a’s logins were used to compute pq; and oq;.

7.1 Entropy due to keystrokes

Fundamental to our empirical evaluation is the measure of
keystroke entropy we chose, which we now describe. As
described above, all users employ the same password in our
experiments. Intuitively, our measure of entropy should cap-
ture the amount of remaining uncertainty there is in hpwd,
for a randomly chosen account a.

We define a feature descriptor to be a partial function
b:{l,...,m} — {0,1}, and let B be the set of all feature
descriptors. For a fixed k, let the feature descriptor by for
account a be defined by

0 if pa; +koai <t;
ba (1) = 1 if pei — koai > t;
1 otherwise

That is, be(i) = 1 for every distinguishing feature ¢; on
which the user is “slow” and b, (i) = 0 for every distinguish-
ing feature ¢; on which the user is “fast”. For other features
@i, b (7) is undefined (L).

We would like to compute the entropy of a randomly
chosen account’s feature descriptor. However, this is com-
plicated by the fact that a feature descriptor may (and typ-
ically will) have undefined values. For example, suppose
that |A| = m, that each account has only a single distin-
guishing feature, and that no feature is distinguishing for
two accounts. Then, the Shannon entropy of a randomly
chosen account a’s feature descriptor would seem to be at
least log m, due to the uncertainty in the position 4 of the
account’s distinguishing feature (i.e., by(i) # L1). Never-
theless, an attacker knowing pwd, need only attempt to re-
construct hpwd, using at most two different (total) feature
descriptors, e.g., b such that b(:) = 0 for each 1 < i < m,
and b such that b(7) = 1 for each 1 <7 < m.

As a tool to better capture the entropy available due to
keystrokes, we define a cover to be a function C : A —+ B
such that C(a) is total for each a € A, and b, (i) # L =
be (i) = C(a)(7). That is, a cover maps each account a to
a (total) feature descriptor that is identical to b, wherever
be is defined. Given a cover, we can evaluate the entropy
of C(a) under random choice of a, in a way that will be
defined below. We then choose a cover that minimizes this
entropy, and take this cover’s entropy as “the entropy due to

keystrokes”. This provides a more conservative evaluation
of the entropy due to keystrokes, because multiple accounts
can map to the same total feature descriptor under C. So,
in the example of the previous paragraph, all accounts can
map to at most two such descriptors.

Guessing entropy [17] is a natural way to define the en-
tropy of a cover. Let Img(C) ={b € B|3a € A:C(a) = b},
and we(d) = |[{a € A | C(a) = b}|/|A|. If we denote
Img(C) = {b1,...,b;} such that we(b1) > we(b2) > ... >
we(be), then the guessing entropy of the cover C is

[Tmg(C)|

S G we(b)

i=1

Ec =

Intuitively, the guessing entropy is the expected number of
feature descriptors in Img(C) an attacker would need to ex-
amine (and perform the corresponding reconstruction) to
find hpwd, for a randomly chosen account a. Moreover,
this expected value supposes that the attacker knows the
“weight” wc(b) of each element in Img(C) and thus exam-
ines elements of Img(C) in an optimal order to minimize
this expected value. As described above, in the worst case
an attacker will know Img(C) and we for a cover C that min-
tmizes Ec, and so it is this cover we use in our computations
of Section 7.2.

7.2 Results

Our analysis methodology consisted of the following steps
for each value of k. We first found values t4,, and t; that
maximized the guessing entropy, when t; = tg, for each
duration feature ¢; and when t; = ¢, for each latency fea-
ture ¢;. More specifically, for each pair of candidate integer
values tqur, tix in the ranges 80 ms < tq, < 125 ms and
70 ms <t < 140 ms, we computed the feature descriptor
for each account and a cover C for these feature descriptors
with minimum guessing entropy. We then chose a pair tqur,
tiae that resulted in the highest guessing entropy from this
calculation. In this way, we captured the guessing entropy
faced by the attacker in the case that the system was con-
figured with optimal values of tgur, tx. The reliability of
password login was computed by calculating the percentage
of each account’s logins that would have succeeded for these
values of tqyur, tiat, and then averaging these percentages over
all accounts. If there were multiple pairs that yielded the
same maximum guessing entropy as computed above, then
tdur, tiax were chosen from among them as the pair yielding
the highest reliability. The average number of distinguishing
features d per user given k, t4ur, and t;x was then computed.

The results of this analysis are shown in Figure 1. The
smallest value of k£ studied was k = 0.4. This choice yields
a guessing entropy of roughly 6.1, which is strong given the
small number of users (13) in our study. (For this number of
users, the maximum possible guessing entropy would be 7.)
Moreover, this choice yields roughly 12.3 distinguishing fea-
tures for the average account and an approximately 51.6%
success rate for legitimate logins. That is, the expected num-
ber of attempts before a user succeeds in logging into her
account is less than 2. If this reliability is insufficient, how-
ever, then increasing k to 1.0, for example, increases login
reliability to 77.1% while retaining a respectable guessing
entropy (2.8) and number of distinguishing features (7.7).
Due to the computational expense of analyzing our data for
values of k greater than 1.0, we cannot report results for
these cases here.

mean # distinguishing features per account guessing entropy

% successful logins

6.5

55

4.5

35

25

12.5

12

11

10.5

10

9.5

8.5

7.5

80

75

70

65

60

55

50

=

=

Figure 1: Empirical results

8 Implementation

We have implemented the method of Section 5.4 to experi-
ment with our techniques further. Our reference implemen-
tation is built in C/C++ for Microsoft Windows platforms,
and utilizes the Microsoft Foundation Classes (MFC) for
constructing its user interface. In particular, the MFC pro-
vides the low-level key press and key release events necessary
to time the duration and latency of keystrokes. Our imple-
mentation utilizes the CryptoLib library [11] version 1.2 for
its basic cryptographic operations, extended with the use of
addition chains to optimize modular exponentiations [2].

Our implementation provides three types of functions:
initialization, login, and recovery. We have already described
the first two of these functions in detail. The third, recovery,
is intended for use in circumstances where the user finds her-
self unable to generate her correct hardened password after
repeated attempts, due to a sharp change in her typing pat-
terns. We have shown in Section 7 that this should be a rare
occurrence for reasonable values of k, but it is nevertheless
one that must be anticipated. The recovery program that we
have implemented is easily derived from the login program
described in Section 5.4: the recovery program decrypts all
instruction table entries using the password pwd, (provided
by the user) and then exhaustively searches to find hpwd,
(within time proportional to 2™). However, this recovery
program should not simply be used as an alternative login
program, since it would enable an attacker who learns pwd,
to generate hpwd, without having to recreate the legitimate
user’s keystroke dynamics. Rather, the use of this recovery
program should be under tighter controls, e.g, an admin-
istrator’s. Other recovery techniques are possible, such as
additionally storing the hardened password encrypted under
a much stronger secret that can be accessed only with ad-
ministrator assistance or with an additional hardware token.

We have performed a battery of tests to evaluate the
performance of the method in Section 5.4. These tests were
run on a Dell Inspiron 3200 computer with a 266 MHz Pen-
tium II processor running Windows NT Workstation 4.0. In
these tests, ¢ and p were 160 bits and 1024 bits, respec-
tively. Triple-DES in CBC mode was used to encrypt the
history file. The pseudorandom function family G was im-
plemented as Gx(z) = F(K,z) where F' was SHA-1. The
history length was h = 8. The number of measured features
was m = 15.

Of the three functions, the times required for initializa-
tion and recovery are highly variable. The time for initial-
ization is overwhelmingly dominated by the time needed to
generate p and ¢, which can be substantial but in our tests
always completed in under one minute. Since p and g can be
generated once and then used for all accounts, this should
not be a bottleneck in practice. Recovery is the other func-
tion with highly variable delays. Our implementation ex-
haustively searches through the 2!5 possible (total) feature
descriptors, using each to attempt to generate hpwd,. The
enumeration and testing of all 2!% possibilities completes in
roughly 11 hours in the worst case.

In contrast to the times for initialization and recovery,
delays for successful and failed logins are virtually constant.
Beginning when the user finishes typing her password, suc-
cessful logins require roughly 4.5 seconds to complete, and
failed logins complete in approximately 1.2 seconds. The
delay for a failed login is substantially shorter than for a
successful one because a login failure causes most of the lo-
gin steps to be bypassed.

9 Conclusion

We have presented a novel approach for hardening passwords
by exploiting the keystroke dynamics of users. Our approach
enables the generation of a long-term secret (the hardened
password) that can be tested for login purposes or used for
encryption of files, entry to a virtual private network, etc.
Our technique increases the time for an offline attacker to
exhaustively search for this hardened password (or the text
password used to generate it), and can be used in conjunc-
tion with salting to slow the attacker further. In addition,
our approach improves security against an online attacker
who learns the text password (e.g., by observing it being
typed) and attempts to login to an account protected by
the hardened password.

As our prototype implementation suggests, our technique
is viable for use in practice. It adapts to gradual changes in
a user’s keystroke dynamics over time, while still generating
the same hardened password. And, using actual keystroke
data, we have given evidence that our scheme both improves
upon the security of conventional passwords and is easy to
use by the average user. There remains a small risk in our
scheme that due to a sudden shift in typing behavior, a
user will be unable to log into her account. This risk can
be minimized if the use of our scheme is restricted to local
logins on the same keyboard (e.g., on laptops). In addition,
our scheme can be coupled with recovery mechanisms, as we
have described.

For future work, we intend to validate our methods on a
larger user population. We are also investigating the perfor-
mance of our techniques when applied to other biometrics,
particularly other non-static biometrics such as voice, where
features such as pitch and amplitude can be used in place
of latencies and durations.

Acknowledgements

We are grateful to Markus Jakobsson and Amin Shokrollahi
for insightful discussions. Phil MacKenzie and the anony-
mous referees provided helpful comments that improved the
presentation of this paper. Thanks also to Daniel Bleichen-
bacher for providing an implementation of [2].

References

[1] S. Bleha, C. Slivinksy, and B. Hussein. Computer-access secu-
rity systems using keystroke dynamics. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-12(12):1217—
1222, December 1990.

[2] D. Bleichenbacher. Addition chains for large sets. Manuscript,
1999.

[3] G.I.Davida, Y. Frankel, and B. J. Matt. On enabling secure ap-
plications through off-line biometric identification. In Proceed-
ings of the 1998 IEEE Symposium on Security and Privacy,
pages 148-157, May 1998.

[4] D. Feldmeier and P. Karn. UNIX password security—Ten years
later. In Advances in Cryptology— CRYPTO ‘89 Proceedings
(Lecture Notes in Computer Science 435), 1990.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, New York, 1979.

[6] R. Gaines, W. Lisowski, S. Press, and N. Shapiro. Authenti-
cation by keystroke timing: Some preliminary results. Rand
report R-256-NSF. Rand Corporation, 1980.

[7] V. Guruswami and M. Sudan. Improved decoding of Reed-
Solomon and algebraic-geometric codes. In Proceedings of the
39th IEEE Symposium on Foundations of Computer Science,
pages 28-37, 1998.

[8] G. Horng. Password authentication without using a password
table. Information Processing Letters 55:247-250, 1995.

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

R. Joyce and G. Gupta. Identity authorization based on
keystroke latencies. Communications of the ACM 33(2):168—
176, February 1990.

D. Klein. Foiling the cracker: A survey of, and improvements to,
password security. In Proceedings of the 27d USENIX Security
Workshop, August 1990.

J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib: Cryp-
tography in software. In Proceedings of the 4*"® USENIX Secu-
rity Workshop, pages 1-17, October 1993.

C. H. Lin, C. C. Chang, T. C. Wu, and R. C. T. Lee. Pass-
word authentication using Newton’s interpolating polynomials.
Information Systems 16(1):97-102, 1991.

R. E. Lennon, S. M. Matyas, and C. H. Meyer. Cryptographic
authentication of time-invariant quantities. IEEE Transactions
on Communications COM-29(6):773-777, June 1981.

G. Leggett and J. Williams. Verifying identity via keystroke
characteristics. International Journal of Man-Machine Studies
28(1):67-76, 1988.

G. Leggett, J. Williams, and D. Umphress. Verification of user
identity via keystroke characteristics. Human Factors in Man-
agement Information Systems, 1989.

U. Manber. A simple scheme to make passwords based on one-
way functions much harder to crack. Computers & Security
15(2):171-176, 1996.

J. L. Massey. Guessing and entropy. In Proceedings of the 1994
IEEE International Symposium on Information Theory, 1994.

D. Mahar, R. Napier, M. Wagner, W. Laverty, R. Henderson
and M. Hiron. Optimizing digraph-latency based biometric typ-
ist verification systems: inter and intra typists differences in di-
graph latency distributions. International Journal of Human-
Computer Studies 43:579-592, 1995.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography, CRC Press, 1997.

F. Monrose and A. Rubin. Authentication via keystroke dynam-
ics. In Proceedings of the 4ttt ACM Conference on Computer
and Communications Security, pages 48—-56, April 1997.

R. Morris and K. Thompson. Password security: A case history.
Communications of the ACM, 22(11):594-597, November 1979.

K. S. Nash. Rising laptop theft tacks
on $150 a box. ComputerWorld, August 3, 1998. Available at
http://www.computerworld.com/home/print.nsf/all/9808035ED6.

R. L. Rivest. Cryptography. In Handbook of Theoretical Com-
puter Science, Chapter 13, pages 717-755, Elsevier Science Pub-
lishers, B.V., 1990.

J. A. Robinson, V. M. Liang, J. A. Chambers and C. L. MacKen-
zie. Computer user verification using login string keystroke dy-
namics. IEEE Transactions on System, Man, and Cybernetics,
28(2), 1998.

A. Shamir. How to share a secret. Communications of the ACM
22(11):612-613, November 1979.

FIPS 180-1, Secure hash standard. Federal Information Pro-
cessing Standards Publication 180-1, U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, April
17, 1995.

E. Spafford. Observations on reusable password choices. In Pro-
ceedings of the 3°¢ USENIX Security Symposiuwm, September
1992.

D. Umphress and G. Williams. Identity verification through key-
board characteristics. International Journal of Man-Machine
Studies 23(3):263-273, 1985.

T. Wu. A real-world analysis of Kerberos password security. In
Proccedings of the 1999 Network and Distributed System Se-
curity Symposium, February 1999.

